SPONSORED BY THE

Sensory acquisition, automated identification and evaluation of old parts on the basis of product data as well as information about previous deliveries

> Resource-efficient Circular Economy – Innovative Product Cycles (ReziProK)

"Turn old into new": old part and refurbished part, ready for a second life in the vehicle.

The transition to a circular economy, the re-use of products, requires an efficient collection and identification of used products. What do they consist of? What is usable? Every product is unique due to its history. Nevertheless, it is often similar to its successors. To facilitate identification, an artificial intelligence (AI) supports the identification of the product in the "EIBA" project.

Teamwork with artificial intelligence

At the end of a products use phase, there are various disposal or processing strategies. Products can be recycled or processed and reused, depending on their type and condition. For this purpose, they must be clearly identified and evaluated. The challenge is that many product models differ only slightly from one another and are difficult to identify due to contamination and wear. In addition, the professional personnel has only a few seconds to identify and evaluate them. In order to support people in their work, the "EIBA" project consortium wants to develop a system to assist them in identifying and evaluating the products. Sensor-based data is evaluated with the help of artificial intelligence in combination with other information and formulated into a decision recommendation. Thanks to the dual control principle of man and machine, both the error rate during identification and the strain on people are to be reduced.

Self-learning technology

The aim of the "EIBA" project is to develop a system for the identification and condition assessment of old parts. This will make an important contribution to closing the cycle through digital technologies. By using methods of artificial intelligence - such as machine learning as well as deep learning - the system should be able to identify products and compare them with other available information. By continuously expanding the data, it should also be able to adapt to new products and requirements.

Humans and artificial intelligence complement each other in the project "EIBA".

One innovation of the project is to complementary combine the competences of man and machine to enable higher process security and efficiency. The resulting system will be analysed according to sustainability aspects: What has changed for the worker? What additional environmental burdens are initially caused by the use of machines, and how great are the environmental benefits gained through increased efficiency?

First results

The development of the system is basing on the example of old car-parts (cores). In order to include also challenges and requirements of other products in the development-process, extensive interviews with companies of other industries such as textiles, printer cartridges or semi-conductors were conducted. Another important focus in the project is machine vision in which some very promising first results could be achieved. Based on image data of approx. 1400 different old parts the AI was able to identify 85% correctly in performance-tests. By using a hierarchy of specialized neural networks, the recognition-rate could even be improved to more than 90%. As these performancetests have been conducted in controlled conditions, a validation facing the challenges in real industrial environment is pending. For that purpose, all workstations in one C-ECO location have been equipped with cameras and digital scales which have been connected to the identification-software.

Prototype workstation with sensor equipment in EIBA project

With this setting, data-availability will be enhanced to generate further training-data to improve the Al's capabilities and to adapt better to "real life" conditions. An additional challenge is the efficient integration of the sensors and Al in the working process. For that the current process has been analyzed in detail to create a concept for the adaption. Here the focus is on the presentation of the Al-results in the humanmachine-interface and on restructuring process-steps using the new available data.

Interdisciplinary teamwork

The challenges in the "EIBA" project are resulting from the complex combination of latest informationtechnology, application-oriented process know-how and knowledge on market-requirements for an efficient circular economy which can be globally scaled. To address that, engineers from different disciplines work together to look at the challenges from different perspectives and make the best possible use of the potentials.

The project "EIBA" is funded within the funding measure "Resource-efficient Circular Economy – Innovative Product Cycles (ReziProK)".

"ReziProK" is part of the research concept "Resourceefficient Circular Economy" of the Federal Ministry of Education and Research (BMBF) and supports projects that develop business models, design concepts or digital technologies for closed product cycles.

Contact

Markus Wagner Circular Economy Solutions GmbH Greschbachstr. 3 76229 Karlsruhe Phone: +49 162 4305042 e-mail: Markus.Wagner@c-eco.com

Project partners

Fraunhofer-Institut für Produktionsanlagen und Konstruktionstechnik; Technische Universität Berlin, Fachgebiet Montage- und Handhabungstechnik; acatech – Deutsche Akademie der Technikwissenschaften

Funding measure

Resource-efficient Circular Economy – Innovative Product Cycles (ReziProK)

Project title

EIBA – Sensory acquisition, automated identification and evaluation of old parts on the basis of product data as well as information about previous deliveries

Project duration 01.09.2019–31.08.2022

Funding reference number 033R226

Funding volume of the project 1.414.227 Euro

Internet innovative-produktkreislaeufe.de/resswinn/en/

Publisher and editorial office Networking and transfer project "RessWInn"

Design PM-GrafikDesign

Picture credits Bosch/C-ECO

Status 02 2021

