PULSED TERAHERTZ_EMITTER AND RECEIVER MODULES

AT A GLANCE

- Photoconductive switches for 1.5 µm optical wavelength
- Emitted THz power confirmed by PTB

Features
- Up to 100 µW THz power
- Photoconductive Emitter and Receiver
- Mesa-structured InGaAs chips
- Small module footprint
- Plug and play design

Applications
- High-bandwidth terahertz spectroscopy
- Industrial process control
- Non-contact coating film thickness measurement
- High-speed measurements

www.hhi.fraunhofer.de
Specifications

- THz power: 100 µW
- Spectral range: 0.1 - 5 THz
- Dynamic range (peak): >90 dB
- Optical wavelength: 1.5 µm
- Average optical power: 30 mW
- Puls duration: 100 fs
- Emitter bias voltage: 100 V
- Measuring head diameter: 25 mm

* at emitter position

Trace of electrical THz puls for 30mW optical power. The inset shows the emitted THz power vs. optical illumination power.

Frequency spectrum recorded with HHI’s pulsed Terahertz modules. Operation conditions are given in the specifications.

Technical background

In terahertz time domain spectroscopy (TDS), a device under test (DUT) is probed with a short THz pulse. The frequency dependence of loss and refractive index is extracted from the detected pulse via a Fourier transform. Typical applications for pulsed THz radiation are depth-resolved imaging for e.g. 3D quality inspection and spectroscopic measurements beyond 3 THz. HHI’s High Power THz modules allow for faster measurements and therefore facilitate the transfer of THz technologies to industrial applications and environments.

The Fraunhofer HHI

One of the prime research and development foci of the Fraunhofer Heinrich Hertz Institute lies in photonic networks, components and systems and their application in fields such as digital media.

Contact

Dr. Joachim Gieseckus
Photonic Components
Fraunhofer Heinrich Hertz Institute
Einsteinufer 37 | 10587 Berlin | Germany
Phone +49 30 31002-425
joachim.gieseckus@hhi.fraunhofer.de

© Fraunhofer Heinrich Hertz Institute, Berlin 2015

www.hhi.fraunhofer.de